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Single crystals  of  a-MolsSei9 (hexagonal ,  space group P63/m, a = 9.450(2), c = 19.600(2) A) were 
prepared by deintercalat ion of  In3MolsSe19 with iodine. The structure was de termined f rom an X-ray 
data  set  of  726 unique  reflections (R = 0.050, Rw = 0.070). The d imensions  of the Mo6Se8 cluster  in this 
compound  are not  significantly different f rom those  in fl-MolsSeig. The mean  me ta l -me ta l  dis tance in 
the  MogSell c luster  is identical to that  in the fl phase ,  a l though individual d is tances  differ significantly. 
This  may  be at tr ibutable to the differences in packing between the two isoelectronic phases .  © 1990 
Academic Press, Inc. 

Introduction 

Metal-metal bonding in low valent mo- 
lybdenum complexes produces molybde- 
num chalcogenides containing Mo6 octahe- 
dra (1, 2) or more extended clusters 
resulting from the confacial condensation 
of Mo6 octahedra (3-7). Crystals of these 
clusters contain channels, or gaps between 
clusters, which may be intercalated by vari- 
ous metal atoms. Yvon (2) established dis- 
tinct trends in Mo-Mo bond shrinkage 
upon increased formal charge of the inter- 
calated metal atom for the M~Mo6Se8 se- 
ries. Thus, the intercalated metal atom may 
be viewed as donating electrons into bond- 

* Au thor  to w h o m  cor respondence  should be ad- 
dressed.  
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ing orbitals of the clusters. The trends in 
Mo-Mo bond lengths are also observed for 
Mo9Sell clusters. For example, /3-MxMo15 
8e19 systems, which are composed of two 
distinct molybdenum clusters, Mo6Se8 and 
Mo9Se11 (15), exhibit modest contractions 
of the Mo-Mo bonds upon indium interca- 
lation. However,  the behavior of the o~-Mx 
MolsSe19 systems (8) is inconsistent with 
the observed trends in the /3 series. Al- 
though fi-MxMOl5Sel9 and binary fi-Mo15 
S e l 9  systems have been studied and the 
Mo-Mo bond lengths compared (14-17), 
no studies of the binary a-MolsSe19 phase 
have been reported. We present the prepa- 
ration and characterization of single crys- 
tals of the a form of MOlsSel9 and report the 
comparison of its Mo-Mo bond lengths to 
those of a-MxMo15Se19 and the/3 phases. 
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Experimental 

Black, shiny needles of a-MolsSel9 were 
isolated as a minor phase from a deinterca- 
lation reaction of  InEMo6Se6 (6, 7) and I2. 
The charge was placed in an evacuated 
glass tube with a stoichiometric amount of  
I2 and heated in a temperature gradient 

TABLE I 

CRYSTAL DATA AND DATA COLLECTION 
PARAMETERS 

Formula MolsSe~9 
Formula weight 2939.34 
Space group P63/m (No. 176) 
a (A) 9.450(2) 
c (A) 19.600(2) 
v (A 3) 1515.8(8) 
Z 2 
dc~o (gcm -3) 6.439 
Crystal dimensions (mm) 0.05 x 0.05 x 0.12 
Temperature (°C) 23. 
Radiation (wavelength) MoKa (0.71073 A) 
Monochromator Graphite 
Linear abs. coef. (cm 1) 284.32 
Absorption correction 

applied Empirical a 
Transmission factors: 

min, max 0.66, 1.00 
Diffractometer Enraf-Nonius CAD4 
Scan method ~o-20 
h, k, I limits: -10  to 8, 0 to 10, 0 to 21 
20 range (deg) 6.00-46.00 
Scan width (deg) 1.00 + 0.35 tan(0) 
Take-off angle (deg) 2.80 
Programs used Enraf-Nonius SDP 
F000 2552.0 
p-Factor used in 

weighting 0.040 
Data collected 1634 
Unique data 726 
Agreement factor (on I) 0.048 
Data with I > 3.0o-(/) 379 
Number of variables 55 
Largest shift/esd in final 

cycle 0.03 
R 0.050 
Rw 0.070 
Goodness of fit 1.766 

a N. Walker and D. Stuart, Acta Crystallogr. Sect. 
A 39, 158 (1983). 

TABLE II 

TABLE OF POSITIONAL PARAMETERS AND THEIR 
ESTIMATED STANDARD DEVIATIONS 

Atom x y z B (A 2) 

(Sel) 0 0 0.1618(3) 0.94(9) 
(Se2) 0.33333 0.66666 0.5314(3) 1.25(9) 
(Se3) 0.3021(5) 0.3379(6) 0.75 0.9(1) 
(Se4) 0.0378(4) 0.3300(4) 0.0473(1) 0.71(7) 
(SeS) -0.0013(4) 0.3744(4) 0.6441(2) 0.69(7) 
(Mol) 0.4889(5) 0.6504(5) 0.75 0.85(9) 
(Mo2) 0.1731(3) 0.1526(3) 0.0607(1) 0.66(6) 
(Mo3) 0.1813(3) 0.6885(4) 0.6327(1) 0.84(6) 

Note. Anisotropically refined atoms are given in the 
form of the isotropic equivalent thermal parameter de- 
fined as: 

(~) * [a 2 */3(1, 1) + b 2 */3(2, 2) 

+ c z */3(3, 3) + ab(cos y) */3(1, 2) 

+ ac(cos/3) */3(1, 3) + be(cos c0 */3(2, 3)]. 

from 400°C to room temperature. Deinter- 
calation of indium atoms from In-3Mo~sSe19 
crystals, a possible contaminant at the cool 
end of the tube, produced needles of ~-Mo~5 
Sel9. 

The black needle used for data collection 
was mounted on a glass fiber with its long 
axis roughly parallel to the q5 axis of the 
goniometer. Data collection and refinement 
parameters are outlined in Table I. The 
structure was solved using a combination of 
Patterson and difference Fourier methods 
and was refined by full-matrix least-squares 
techniques. 

The 379 reflections having intensities 
greater than 3,0 times their standard devia- 
tion were used in the refinements. The final 
cycle of refinement included 55 variable pa- 
rameters and converged with unweighted 
and weighted agreement factors: R = 0.050 
and Rwt = 0.070. The crystal appeared to be 
effectively free of indium. Attempts at re- 
fining 5% occupancy levels at the possible 
indium sites led to very large temperature 
factors. Also, no electron density was ob- 
served at these sites in the Fourier differ- 
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TABLE III 

Bond a-Mo15Se19 fl-MolsSe19 a In3.3MolsSe19 b Sym. code 

Intracluster distances of MogSeH unit 

Mo(1)-Mo(1) 2.688(7) 2.697 2.768(10) a 
Mo(1)-Mo(3) 2.752(4) 2.719 2.757(7) b 

-Mo(3) 2.796(4) 2.830 2.771(7) a 
Mo(1)-Se(3) 2.573(7) 2.584(14) a 

-Se(3) 2.574(6) 2.609(14) 
Mo(1)-Se(5) 2.522(4) 2.596(5) a 
Mo(3)-Mo(3) 2.685(5) 2.677 2.655(7) a 
Mo(3)-Se(2) 2.519(6) 2.517(7) 
Mo(3)-Se(3) 2.703(4) 2.692(5) b 
Mo(3)-Se(5) 2.591(4) 2.568(10) 

-Se(5) 2.595(4) 2.635(10) b 
Se(2) -Se(5) 3.711(5) 3.649(7) 
Se(3) -Se(5) 3.565(5) 3.583(10) a 

-Se(5) 3.693(6) 3.834(7) 

Intracluster distances of Mo6Se8 unit 

Mo(2)-Mo(2) 2.837(4) 2.827 2.693(7) - c  
-Mo(2) 2.682(4) 2.675 2.688 (7) c 

Mo(2) -S e( 1 ) 2.515(5) 2.547(9) 
Mo(2)-Se(4) 2.541 (4) 2.557(6) - c 

-Se(4) 2.568(5) 2.573(11) d 
-Se(4) 2.581(6) 2.628(11) 

Se(1) -Se(1) 3.459(8) 3.473(14) - e  
Se( 1 ) -S  e(4) 3.711 (5) 3.663 (8) 
Se(4) -Se(4) 3.489(5) 3.620(6) - c 

Intercluster distances 

Mo(2)-Mo(3) 3.221 (5) 3.512(8) f 
Mo(2)-S e(5) 2.593 (4) 2.661 (6) g 
Mo(3)-Se(4) 2.599(5) 2.665(6) h 
Se(1) -Se(1) 3.459(8) 3.473(14) - i  
Se(1) -Se(3) 3.496(4) 3.745(10) g 
Se(1) -Se(5) 3.561(4) 3.720(7) g 
Se(2) -Se(4) 3.379(4) 3.577(8) - e  

-Se(4) 3.537(4) 3.649(7) j 
Se(4) -Se(5) 3.534(5) 3.582(9) k 

-Se(5) 3.540(5) 3.601(6) g 
-S e(5) 3.812(4) 3.754(6) - e 

Note. (a) 1 - y, x - y + 1, z; (b) y - x, 1 - x, z; (c) - y ,  x - y, z; (d) y - x, - x ,  z; (e) - x ,  - y ,  0.5 + z; 
( f ) x - y +  1, x, l.5 + z; (g) y, y - x, -0 .5  + z; (h) - x ,  1 - y ,  0 . 5 + z ; ( i ) y , y - x ,  0.5 + z; (j) x - y, x, 
-0 .5  + z; (k) - x ,  1 - y, -0 .5  + z. Negative sign before the letter implies the inversion operation. 

" Ref. (9). Neither atomic positions nor standard deviations were reported. 
b Ref. (8). 

e n c e  m a p .  F i n a l  a t o m i c  p o s i t i o n s  a r e  r e -  

p o r t e d  in  T a b l e  I I  a n d  b o n d  d i s t a n c e s  in  

T a b l e  I I I .  A t a b l e  o f  o b s e r v e d  a n d  c a l c u -  

l a t e d  s t r u c t u r e  f a c t u r e s  a n d  a t a b l e  o f  a n i s o -  

t r o p i c  t e m p e r a t u r e  f a c t o r s  a r e  a v a i l a b l e  

f r o m  o n e  o f  t h e  a u t h o r s  ( W . R . R . )  
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Discussion 

Like other Mol5Sel9 derivatives, crystal- 
line o~-MolsSe19 is composed of two molyb- 
denum selenide clusters: Mo6Se8 and Mo9 
Seu (Fig. 1). The Mo6Se8 unit consists of an 
octahedron of molybdenum atoms with se- 
lenium atoms bridging each triangular face. 
The selenium atoms lie at the vertices of a 
cube with Mo atoms in each face. The Mo6 
Se8 cluster in a-Mo15Se19 has the same di- 
mensions as the cluster in MorSe8 (13) and 
in/3-MolsSe19 (9). The Mo9Sen unit may be 
thought of as two Mo6Se8 units which have 
been fused along one face of the Mo6 octa- 
hedron forming a confacial bioctahedron of 
molybdenum. The selenium atoms bridge 
each triangular face. The three selenium at- 
oms which are coplanar with the shared oc- 
tahedral face bridge two triangular faces- -  
one on each octahedron. The dimensions 
within the Mo9Seu clusters differ slightly in 
~- and/3-MolsSe19. 

Binary MolsSe19 exists in two crystallo- 
graphic forms, a hexagonal a phase and a 
rhombohedral/3 phase. These differences, 

~ ) M o  (2) 
Se(4) Se ( 2  

Mo(5) 
Se(5) 

FIG. 1. The MorSe8 and Mo9Sell clusters in a-M015 
Se19. 

which also may be seen in the parent ter- 
nary systems, have been described by 
Chevrel, et al. (9) and by Tarascon and 
Murphy (16) in terms of the sequences of 
clusters in the c-direction about centers at 
(0, 0, z) and (§, k, z). The o~ phase consists of 
two different sequences: a series of Mo6 
Se8-Mo6Se8-Mo6Se8 clusters along the 
threefold axes at (0, 0, z) and a series of 
Mo9Se11-Mo9SeH-Mo9Seu clusters along 
the threefold axes at (~, ~, z). The/3 phase 
consists of a single sequence of Mo6Se8- 
Mo9Seu-Mo6Se8 clusters along each three- 
fold axis. The o~ phase has C3h symmetry 
about the Mo9Sell cluster, while the /3 
phase has D3 symmetry about the Mo9Sell 
cluster. 

For the Mo6 cluster, the differences in 
Mo-Mo bond lengths between ot-Mor5Sel9 
(8) and In-3Mo15Se19 are consistent with in- 
dium donating electrons to the molybde- 
num clusters (10). Like the /3 phase, the 
Mo6Se8 cluster of the a phase becomes 
more symmetrical via contraction upon in- 
creasing ternary intercalation (Table III). 
However,  the M o - M o  bond lengths in the 
Mo9 cluster of the o~ phase of In-3MolsSe19 
differ slightly from those in the /3 phase, 
and these differences become more pro- 
nounced at high ternary concentration. In 
the indium intercalated ~ systems, the Mo9 
Sell cluster is more uniform than that in the 
binary phase. Intercalation produces a mild 
contraction of the Mo-Mo bonds both 
along the threefold axis and in the median 
triangle [Mo(1)-Mo(1)], along with an elon- 
gation in the outer triangles [Mo(3)-Mo(3)]. 
These changes differ from the /3 phase, 
which contracts along the threefold axis 
and elongates at the median. The differ- 
ences in behavior of the Mo(1)-Mo(3) 
bonds upon intercalation are indicative of a 
twisting of the molybdenum triangles about 
the threefold axis. However,  the twisting 
does not cause any differences between in- 
terplanar spacings [between the MoO) tri- 
angles and the Mo(3) triangles]. The in- 
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tercluster selenium-selenium distances, 
molybdenum-molybdenum bonds, and mo- 
lybdenum-selenium bonds between the 
Mo6Se8 and Mo9Sell units of  c~-Mo15Se19 
lengthen with increasing indium concentra- 
tion. Thus for the binary a-MolsSelg, the 
intercluster distances are shortened to dis- 
tances which are comparable to intracluster 
bond lengths. 

In summary, addition of indium to a- 
MolsSe19 results in changes in the Mo-Mo 
bond lengths of the MO6 cluster which are 
similar to those in the/3 system. Also, in- 
dium addition results in changes of the Mo- 
Mo bond lengths in the Mo9 cluster of the a 
phase which are different from those in the 
/3 phase. From changes in the Mo(1)-Mo(3) 
bond lengths, rotation about the threefold 
axis may be inferred to be among the differ- 
ences between the o~ and/3 phases. 
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