The Structure of $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$, a Binary Molybdenum Selenide Containing $\mathbf{M o}_{6} \mathbf{S e}_{8}$ and $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ Clusters

BARRY D. DAVIS and WILLIAM R. ROBINSON*
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-3699

Received August 28, 1989; in revised form December 1, 1989

Abstract

Single crystals of $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$ (hexagonal, space group $P 6_{3} / m, a=9.450(2), c=19.600(2) \AA$) were prepared by deintercalation of $\mathrm{In}_{3} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ with iodine. The structure was determined from an X-ray data set of 726 unique reflections ($R=0.050, R_{\mathrm{w}}=0.070$). The dimensions of the $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ cluster in this compound are not significantly different from those in $\beta-\mathrm{Mo}_{15} \mathrm{Se}_{19}$. The mean metal-metal distance in the $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ cluster is identical to that in the β phase, although individual distances differ significantly. This may be attributable to the differences in packing between the two isoelectronic phases. © 1990 Academic Press, Inc.

Introduction

Metal-metal bonding in low valent molybdenum complexes produces molybdenum chalcogenides containing Mo_{6} octahedra (1,2) or more extended clusters resulting from the confacial condensation of Mo_{6} octahedra (3-7). Crystals of these clusters contain channels, or gaps between clusters, which may be intercalated by various metal atoms. Yvon (2) established distinct trends in Mo-Mo bond shrinkage upon increased formal charge of the intercalated metal atom for the $M_{x} \mathrm{Mo}_{6} \mathrm{Se}_{8}$ series. Thus, the intercalated metal atom may be viewed as donating electrons into bond-

[^0]ing orbitals of the clusters. The trends in Mo-Mo bond lengths are also observed for $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ clusters. For example, $\beta-M_{x} \mathrm{Mo}_{15}$ Se_{19} systems, which are composed of two distinct molybdenum clusters, $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ and $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ (15), exhibit modest contractions of the Mo-Mo bonds upon indium intercalation. However, the behavior of the $\alpha-M_{x}$ $\mathrm{Mo}_{15} \mathrm{Se}_{19}$ systems (8) is inconsistent with the observed trends in the β series. Although $\beta-M_{x} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ and binary $\beta-\mathrm{Mo}_{15}$ Se_{19} systems have been studied and the Mo-Mo bond lengths compared (14-17), no studies of the binary $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$ phase have been reported. We present the preparation and characterization of single crystals of the α form of $\mathrm{Mo}_{15} \mathrm{Se}_{19}$ and report the comparison of its Mo-Mo bond lengths to those of $\alpha-M_{x} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ and the β phases.

Experimental

Black, shiny needles of $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$ were isolated as a minor phase from a deintercalation reaction of $\mathrm{In}_{2} \mathrm{Mo}_{6} \mathrm{Se}_{6}(6,7)$ and I_{2}. The charge was placed in an evacuated glass tube with a stoichiometric amount of I_{2} and heated in a temperature gradient

TABLE I
Crystal Data and Data Collection Parameters

Formula	$\mathrm{Mo}_{15} \mathrm{Se}_{19}$
Formula weight	2939.34
Space group	$P 6_{3} / m$ (No. 176)
$a(\AA)$	9.450(2)
$c(\AA)$	19.600(2)
$V\left(\AA^{3}\right)$	1515.8(8)
Z	2
$d_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	6.439
Crystal dimensions (mm)	$0.05 \times 0.05 \times 0.12$
Temperature (${ }^{\circ} \mathrm{C}$)	23.
Radiation (wavelength)	MoK α ($0.71073 \AA$)
Monochromator	Graphite
Linear abs. coef. (cm^{-1})	284.32
Absorption correction applied	Empirical ${ }^{a}$
Transmission factors: \min , \max	0.66, 1.00
Diffractometer	Enraf-Nonius CAD4
Scan method	$\omega-2 \theta$
h, k, l limits:	-10 to 8, 0 to 10,0 to 21
2θ range (deg)	6.00-46.00
Scan width (deg)	$1.00+0.35 \tan (\theta)$
Take-off angle (deg)	2.80
Programs used	Enraf-Nonius SDP
F_{000}	2552.0
p-Factor used in weighting	0.040
Data collected	1634
Unique data	726
Agreement factor (on I)	0.048
Data with $I>3.0 \sigma(I)$	379
Number of variables	55
Largest shift/esd in final cycle	0.03
R	0.050
$R_{\text {w }}$	0.070
Goodness of fit	1.766

[^1]TABLE II
Table of Positional Parameters and Their Estimated Standard Deviations

Atom	x	y	z	$B\left(\mathrm{~A}^{2}\right)$
(Se1)	0	0	$0.1618(3)$	$0.94(9)$
(Se2)	0.33333	0.66666	$0.5314(3)$	$1.25(9)$
(Se3)	$0.3021(5)$	$0.3379(6)$	0.75	$0.9(1)$
(Se4)	$0.0378(4)$	$0.3300(4)$	$0.0473(1)$	$0.71(7)$
(Se5)	$-0.0013(4)$	$0.3744(4)$	$0.6441(2)$	$0.69(7)$
(Mo1)	$0.4889(5)$	$0.6504(5)$	0.75	$0.85(9)$
(Mo2)	$0.1731(3)$	$0.1526(3)$	$0.0607(1)$	$0.66(6)$
(Mo3)	$0.1813(3)$	$0.6885(4)$	$0.6327(1)$	$0.84(6)$

Note. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as:

$$
\begin{aligned}
& \left(\frac{4}{3}\right) *\left[a^{2} * \beta(1,1)+b^{2} * \beta(2,2)\right. \\
& +c^{2} * \beta(3,3)+a b(\cos \gamma) * \beta(1,2) \\
& +a c(\cos \beta) * \beta(1,3)+b c(\cos \alpha) * \beta(2,3)] .
\end{aligned}
$$

from $400^{\circ} \mathrm{C}$ to room temperature. Deintercalation of indium atoms from $\mathrm{In}_{\sim 3} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ crystals, a possible contaminant at the cool end of the tube, produced needles of $\alpha-\mathrm{Mo}_{15}$ Se_{19}.

The black needle used for data collection was mounted on a glass fiber with its long axis roughly parallel to the ϕ axis of the goniometer. Data collection and refinement parameters are outlined in Table I. The structure was solved using a combination of Patterson and difference Fourier methods and was refined by full-matrix least-squares techniques.

The 379 reflections having intensities greater than 3.0 times their standard deviation were used in the refinements. The final cycle of refinement included 55 variable parameters and converged with unweighted and weighted agreement factors: $R=0.050$ and $R_{\mathrm{wt}}=0.070$. The crystal appeared to be effectively free of indium. Attempts at refining 5% occupancy levels at the possible indium sites led to very large temperature factors. Also, no electron density was observed at these sites in the Fourier differ-

TABLE III

Bond	$\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$	$\beta-\mathrm{Mo}_{15} \mathrm{Se}_{19}{ }^{\text {a }}$	$\mathrm{In}_{3.3} \mathrm{Mo}_{15} \mathrm{Se}_{19}{ }^{\text {b }}$	Sym. code
Intracluster distances of $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ unit				
Mo(1)-Mo(1)	2.688 (7)	2.697	2.768(10)	a
$\mathrm{Mo}(1)-\mathrm{Mo}(3)$	$2.752(4)$	2.719	$2.757(7)$	b
- Mo (3)	2.796 (4)	2.830	2.771(7)	a
Mo(1)-Se(3)	2.573(7)		2.584(14)	a
$-\mathrm{Se}(3)$	2.574(6)		2.609(14)	
Mo(1)-Se(5)	2.522(4)		$2.596(5)$	a
Mo(3)-Mo(3)	$2.685(5)$	2.677	$2.655(7)$	a
$\mathrm{Mo}(3)-\mathrm{Se}(2)$	2.519(6)		2.517(7)	
$\mathrm{Mo}(3)-\mathrm{Se}(3)$	2.703(4)		$2.692(5)$	b
$\mathrm{Mo}(3)-\mathrm{Se}(5)$	$2.591(4)$		2.568(10)	
$-\mathrm{Se}(5)$	$2.595(4)$		$2.635(10)$	b
Se(2) - $\mathrm{Se}(5)$	$3.711(5)$		$3.649(7)$	
$\mathrm{Se}(3)-\mathrm{Se}(5)$	$3.565(5)$		3.583(10)	a
$-\mathrm{Se}(5)$	$3.693(6)$		3.834(7)	
Intracluster distances of $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ unit				
$\mathrm{Mo}(2)-\mathrm{Mo}(2)$	2.837(4)	2.827	2.693(7)	-c
$-\mathrm{Mo}(2)$	2.682(4)	2.675	$2.688(7)$	c
$\mathrm{Mo}(2)-\mathrm{Se}(1)$	$2.515(5)$		2.547(9)	
Mo(2)-Se(4)	2.541(4)		2.557(6)	-c
$-\mathrm{Se}(4)$	$2.568(5)$		2.573(11)	d
-Se(4)	$2.581(6)$		2.628(11)	
$\mathrm{Se}(1)-\mathrm{Se}(1)$	$3.459(8)$		3.473 (14)	-e
$\mathrm{Se}(1)-\mathrm{Se}(4)$	$3.711(5)$		$3.663(8)$	
$\mathrm{Se}(4)-\mathrm{Se}(4)$	$3.489(5)$		$3.620(6)$	-c
Intercluster distances				
$\mathrm{Mo}(2)-\mathrm{Mo}(3)$	3.221(5)		3.512(8)	f
Mo(2)-Se(5)	2.593(4)		$2.661(6)$	g
$\mathrm{Mo}(3)-\mathrm{Se}(4)$	$2.599(5)$		$2.665(6)$	h
$\mathrm{Se}(1)-\mathrm{Se}(1)$	$3.459(8)$		3.473(14)	-i
$\mathrm{Se}(1)-\mathrm{Se}(3)$	3.496 (4)		3.745 (10)	g
$\mathrm{Se}(1)-\mathrm{Se}(5)$	$3.561(4)$		$3.720(7)$	g
$\mathrm{Se}(2)-\mathrm{Se}(4)$	$3.379(4)$		$3.577(8)$	-e
$-\mathrm{Se}(4)$	3.537(4)		$3.649(7)$	j
$\mathrm{Se}(4)-\mathrm{Se}(5)$	3.534(5)		3.582(9)	k
-Se(5)	$3.540(5)$		$3.601(6)$	g
$-\mathrm{Se}(5)$	3.812(4)		$3.754(6)$	-e

Note. (a) $1-y, x-y+1, z$; (b) $y-x, 1-x, z$; (c) $-y, x-y, z$; (d) $y-x,-x, z$; (e) $-x,-y, 0.5+z$; (f) $x-y+1, x, 1.5+z$; (g) $y, y-x,-0.5+z$; (h) $-x, 1-y, 0.5+z$; (i) $y, y-x, 0.5+z$; (j) $x-y, x$, $-0.5+z ;(\mathrm{k})-x, 1-y,-0.5+z$. Negative sign before the letter implies the inversion operation.
${ }^{a}$ Ref. (9). Neither atomic positions nor standard deviations were reported.
${ }^{b}$ Ref. (8).
ence map. Final atomic positions are reported in Table II and bond distances in Table III. A table of observed and calcu-
lated structure factures and a table of anisotropic temperature factors are available from one of the authors (W.R.R.)

Discussion

Like other $\mathrm{Mo}_{15} \mathrm{Se}_{19}$ derivatives, crystalline $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$ is composed of two molybdenum selenide clusters: $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ and Mo_{9} Se_{11} (Fig. 1). The $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ unit consists of an octahedron of molybdenum atoms with selenium atoms bridging each triangular face. The selenium atoms lie at the vertices of a cube with Mo atoms in each face. The Mo_{6} Se_{8} cluster in $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$ has the same dimensions as the cluster in $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ (13) and in $\beta-\mathrm{Mo}_{15} \mathrm{Se}_{19}$ (9). The $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ unit may be thought of as two $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ units which have been fused along one face of the Mo_{6} octahedron forming a confacial bioctahedron of molybdenum. The selenium atoms bridge each triangular face. The three selenium atoms which are coplanar with the shared octahedral face bridge two triangular facesone on each octahedron. The dimensions within the $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ clusters differ slightly in α - and $\beta-\mathrm{Mo}_{15} \mathrm{Se}_{19}$.

Binary $\mathrm{Mo}_{15} \mathrm{Se}_{19}$ exists in two crystallographic forms, a hexagonal α phase and a rhombohedral β phase. These differences,

Fig. 1. The $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ and $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ clusters in $\alpha-\mathrm{Mo}_{15}$ Se_{19}.
which also may be seen in the parent ternary systems, have been described by Chevrel, et al. (9) and by Tarascon and Murphy (16) in terms of the sequences of clusters in the c-direction about centers at $(0,0, z)$ and $\left(\frac{2}{3}, \frac{1}{3}, z\right)$. The α phase consists of two different sequences: a series of Mo_{6} $\mathrm{Se}_{8}-\mathrm{Mo}_{6} \mathrm{Se}_{8}-\mathrm{Mo}_{6} \mathrm{Se}_{8}$ clusters along the threefold axes at $(0,0, z)$ and a series of $\mathrm{Mo}_{9} \mathrm{Se}_{11}-\mathrm{Mo}_{9} \mathrm{Se}_{11}-\mathrm{Mo}_{9} \mathrm{Se}_{11}$ clusters along the threefold axes at $\left(\frac{2}{3}, \frac{1}{3}, z\right)$. The β phase consists of a single sequence of $\mathrm{Mo}_{6} \mathrm{Se}_{8}-$ $\mathrm{Mo}_{9} \mathrm{Se}_{11}-\mathrm{Mo}_{6} \mathrm{Se}_{8}$ clusters along each threefold axis. The α phase has $C_{3 h}$ symmetry about the $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ cluster, while the β phase has D_{3} symmetry about the $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ cluster.

For the Mo_{6} cluster, the differences in Mo-Mo bond lengths between $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$ (8) and $\mathrm{In}_{\sim 3} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ are consistent with indium donating electrons to the molybdenum clusters (10). Like the β phase, the $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ cluster of the α phase becomes more symmetrical via contraction upon increasing ternary intercalation (Table III). However, the Mo-Mo bond lengths in the Mo_{9} cluster of the α phase of $\mathrm{In}_{\sim} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ differ slightly from those in the β phase, and these differences become more pronounced at high ternary concentration. In the indium intercalated α systems, the Mo_{9} Se_{11} cluster is more uniform than that in the binary phase. Intercalation produces a mild contraction of the Mo-Mo bonds both along the threefold axis and in the median triangle $[\mathrm{Mo}(1)-\mathrm{Mo}(1)]$, along with an elongation in the outer triangles $[\mathrm{Mo}(3)-\mathrm{Mo}(3)]$. These changes differ from the β phase, which contracts along the threefold axis and elongates at the median. The differences in behavior of the $\mathrm{Mo}(1)-\mathrm{Mo}(3)$ bonds upon intercalation are indicative of a twisting of the molybdenum triangles about the threefold axis. However, the twisting does not cause any differences between interplanar spacings [between the $\mathbf{M o}(1)$ triangles and the $\operatorname{Mo}(3)$ triangles]. The in-
tercluster selenium-selenium distances, molybdenum-molybdenum bonds, and mo-lybdenum-selenium bonds between the $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ and $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ units of $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$ lengthen with increasing indium concentration. Thus for the binary $\alpha-\mathrm{Mo}_{15} \mathrm{Se}_{19}$, the intercluster distances are shortened to distances which are comparable to intracluster bond lengths.

In summary, addition of indium to α $\mathrm{Mo}_{15} \mathrm{Se}_{19}$ results in changes in the $\mathrm{Mo}-\mathrm{Mo}$ bond lengths of the Mo_{6} cluster which are similar to those in the β system. Also, indium addition results in changes of the $\mathrm{Mo}-$ Mo bond lengths in the $\mathrm{Mo}^{\text {, cluster of the } \alpha}$ phase which are different from those in the β phase. From changes in the $\mathbf{M o}(1)-\mathrm{Mo}(3)$ bond lengths, rotation about the threefold axis may be inferred to be among the differences between the α and β phases.

Acknowledgment

We thank Dr. Phillip Fanwick for his assistance in solving the crystal structure.

References

1. O. Fischer, Appl. Phys. 16, 1 (1978).
2. K. Yvon, "Current Topics in Material Science," Vol. III. North-Holland, Amsterdam (1978).
3. R. Chevrel, M. Potel, M. Sergent, M. Decroux, and O. Fischer, J. Solid State Chem. 34, 247 (1980).
4. P. Gougeon, M. Potel, J. Papdiou, and M. Sergent, Mater. Res. Bull. 22, 1087 (1987).
5. P. Gougeon, M. Potel, J. Papdiou, and M. Sergent, Mater. Res. Bull. 23, 453 (1988).
6. W. Honle, H. G. Von Schnering, A. Lipka, and K. Yvon, J. Less-Common Metals 71, 135 (1980).
7. M. Potel, R. Chevrel, M. Sergent, J. C. Armici, M. Decroux, and O. Fischer, J. Solid State Chem. 35, 286 (1980).
8. A. Gruttner, K. Yvon, R. Chevrel, M. Potel, M. Sergent, and B. Seeber, Acta. Crystallogr. Sect. B 35, 285 (1979).
9. M. Potel, P. Grougeon, R. Chevrel, and M. Sergent, Rev. Chim. Miner. 21, 509 (1984).
10. J. M. Tarascon, G. W. Hull, and J. V. WaszcZaK, Mater. Res. Bull. 20, 935 (1985).
11. R. Cheyrel, M. Sergent, B. Seeber, O. Fischer, A. Gruttner, and K. Yvon, Mater. Res. Bull. 14, 567 (1979).
12. J.M. Tarascon, F. J. DiSalvo, D. W. Murphy, G. Hull, and J. V. Waszczak, Phys. Rev. B 29(1), 172 (1984).
13. O. Bars, J. Guillevic, and D. Grandjean, J. Solid State Chem. 6, 48 (1973).
14. J. M. Tarascon and G. W. Hull, Mater. Res. Bull. 21, 859 (1986).
15. R. Chevrel, M. Potel, M. Sergent, M. Decroux, and O. Fischer, Mater. Res. Bull. 15, 867 (1980).
16. J. M. Tarascon and D. W. Murphy, Phys. Rev. B 33(4), 2625 (1986).
17. J. M. Tarascon, Solid State Ionics 18, 768 (1986).

[^0]: * Author to whom correspondence should be addressed.

[^1]: ${ }^{a}$ N. Walker and D. Stuart, Acta Crystallogr. Sect. A 39, 158 (1983).

